Study on Prediction of Coal-Gas Compound Dynamic Disaster Based on GRA-PCA-BP Model

Author:

Wang Kai12,Li Kangnan12,Du Feng12ORCID

Affiliation:

1. Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology (Beijing), Beijing 100083, China

2. School of Emergency Management and Safety Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China

Abstract

The intensity and depth of China’s coal mining are increasing, and the risk of coal-gas compound dynamic disaster is prominent, which seriously restricts the green, safe, and efficient mining of China’s coal resources. How to accurately predict the risk of disasters is an important basis for disaster prevention and control. In this paper, the Pingdingshan No. 8 coal mine is taken as the research object, and the grey relational analysis (GRA), principal component analysis (PCA), and BP neural network are combined to predict the coal-gas compound dynamic disaster. First, the weights of 13 influencing factors are sorted and screened by grey relational analysis. Next, principal component analysis is carried out on the influencing factors with high weight value to extract common factors. Then, the common factor is used as the input parameter of BP neural network to train the previous data. Finally, the coal-gas compound dynamic disaster prediction model based on GRA-PCA-BP neural network is established. After verification, the model can effectively predict the occurrence of coal-gas compound dynamic disaster. The prediction results are consistent with the actual situation of the coal mine with high accuracy and practicality. This work is of great significance to ensure the safe and efficient production of deep mines.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3