Current sustainability and electromigration of Pd, Sc and Y thin-films as potential interconnects

Author:

Yang Yong,Xu Shengyong,Xie Sishen,Peng Lian-Mao

Abstract

Abstract The progress on novel interconnects for carbon nanotube (CNT)-based electronic circuit is by far behind the remarkable development of CNT-field effect transistors. The Cu interconnect material used in current integrated circuits seems not applicable for the novel interconnects, as it requires electrochemical deposition followed by chemical-mechanical polishing. We report our experimental results on the failure current density, resistivity, electromigration effect and failure mechanism of patterned stripes of Pd, Sc and Y thin-films, regarding them as the potential novel interconnects. The Pd stripes have a failure current density of (8∼10)×106 A/cm2 (MA/cm2), and they are stable when the working current density is as much as 90% of the failure current density. However, they show a resistivity around 210 μΩ·cm, which is 20 times of the bulk value and leaving room for improvement. Compared to Pd, the Sc stripes have a similar resistivity but smaller failure current density of 4∼5 MA/cm2. Y stripes seem not suitable for interconnects by showing even lower failure current density than that of Sc and evidence of oxidation. For comparison, Au stripes of the same dimensions show a failure current density of 30 MA/cm2 and a resistivity around 4 μΩ·cm, making them also a good material as novel interconnects.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3