Stochastic Taylor Formulas and Riemannian Geometry
Reference7 articles.
1. Athreya, K.B., Kurtz, T.G.: A generalization of Dynkin’s identity and some applications. Ann. Probab. 1, 520–529 (1973)
2. Airault, H., Follmer,H.: Relative densities of semimartingales. Invent. Math. 27, 299–327 (1974)
3. Friedman, A.: Function-theoretic characterization of Einstein spaces and harmonic functions. Trans. Am. Math. Soc. 101, 240–258 (1961)
4. Gray, A., Willmore T.J.: Mean value theorems on Riemannian manifolds. Proc. Roy. Soc. Edinburgh Sec A. 92, 334–364 (1982)
5. Gray, A., vanHecke, L.: Riemannian geometry as determined by the volume of small geodesic balls. Acta Math. 142, 157–198 (1979)