Abstract
SynopsisLet Mm (r, f) denote the mean-value of a real-valued integrable function f over a geodesic sphere with centre m and radius r in an n-dimensional Riemannian manifold M. We obtain an expansion of Mm (r, f) in powers of r, thereby generalizing Pizzetti's formula valid in euclidean space. From this expansion we prove that the propertyfor every harmonic function near m, characterizes Einstein spaces. We define super-Einstein spaces and prove that they are characterized by the property
Publisher
Cambridge University Press (CUP)
Reference42 articles.
1. Mean values and differential equations
2. Spherical means and geodesic chains on a Riemannian manifold
3. Sulla media dei valori che una funzione dei punti dello spazio assume alla superficie di una sfera;Pizzetti;Atti R. Accad. Rend. Cl. Sci. Fis. Mat. Natur.,1909
4. Solution du problème de Cauchy et de certains problèmes limites pour l'équation des ondes, l'équation de la chaleur et l'équation de Laplace dans les espaces à courbure constante;Olevsky;C. R. (Doklady) Akad. Sci. URSS,1941
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献