Design Optimization of a Composite Rail Vehicle Anchor Bracket

Author:

Lang DanielORCID,Radford Donald W.

Abstract

AbstractThe rail transportation sector is currently seeking to decrease greenhouse gas emissions by incorporating composite materials that can reduce the mass of vehicles. During early adoption of composites in the rail transportation industry, these materials have predominantly been applied to simple design geometries and lightly loaded structures, have been optimized only through modification of composite thickness and composite layer shape, and have only been constrained with respect to a single mechanical performance metric. This study investigates the use of finite element analysis software in the simulation of fiber-reinforced composite materials applied to, and optimized for, a complex and heavily loaded rail vehicle anchor bracket. The research assesses the applicability of optimization methodologies to a complex and heavily loaded structure and advances established practices by constraining the solution with respect to multiple design requirements: manufacturing, compliance, and failure criterion. The optimization process successfully developed a composite structure with a predicted mass reduction of 33% compared to an existing steel design, and simultaneously met compliance, manufacturing, and failure criteria constraints.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Urban Studies,Transportation,Automotive Engineering,Geography, Planning and Development,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic size optimization approach to support railway carbody lightweight design process;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2022-11-23

2. Research on Optimization of Structural Parameters of Equipment Cabin Bottom Cover;Mathematical Problems in Engineering;2022-08-22

3. Cost, Draping, Material and Partitioning Optimization of a Composite Rail Vehicle Structure;Materials;2022-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3