Non-Axisymmetric Modelling of Moving Heat Source for Spatial and Temporal Investigation of Temperature in Railway Vehicles Disc Brake

Author:

Deressa Kejela TemesgenORCID,Ambie Demiss Alemu

Abstract

AbstractRailway disc brake is vulnerable to surface damages including fade, wear, squeal, thermal cracks and fatigue being just few of them. To counteract these negative consequences, reliable thermal model that can accommodate space and time variables is essential. The aim of this study is to develop new non-axisymmetric moving heat source and compare its efficiency with pre-existing traditional models. Factors responsible for temperature spatial and temporal variation are identified first and then programmed in ANSYS APDL similar capability to a FORTRAN. Heat flux and convection coefficients are calculated by empirical equations and stored in parameters and arrays for later use, based on small time and pad angular increment. The modelling is to successfully solve the problems in traditional models by estimating surface temperature difference as high as 49 °C, within acceptable computation time. Besides, its consideration of radial distance reported variations from traditional models as high as 10% and 60% in moving heat source and axisymmetric, respectively. And, it is also verified with the literature within acceptable variation. Finally, it is suggested that the model can be applied in conducting pad geometry optimization, thermal stress and fatigue life of disc brake.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Urban Studies,Transportation,Automotive Engineering,Geography, Planning and Development,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3