Numerical study of 1D and 2D advection-diffusion-reaction equations using Lucas and Fibonacci polynomials

Author:

Ali Ihteram,Haq Sirajul,Nisar Kottakkaran Sooppy,Arifeen Shams Ul

Abstract

AbstractIn this work, a numerical scheme based on combined Lucas and Fibonacci polynomials is proposed for one- and two-dimensional nonlinear advection–diffusion–reaction equations. Initially, the given partial differential equation (PDE) reduces to discrete form using finite difference method and $$\theta -$$ θ - weighted scheme. Thereafter, the unknown functions have been approximated by Lucas polynomial while their derivatives by Fibonacci polynomials. With the help of these approximations, the nonlinear PDE transforms into a system of algebraic equations which can be solved easily. Convergence of the method has been investigated theoretically as well as numerically. Performance of the proposed method has been verified with the help of some test problems. Efficiency of the technique is examined in terms of root mean square (RMS), $$L_2$$ L 2 and $$L_\infty $$ L error norms. The obtained results are then compared with those available in the literature.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3