An Efficient Numerical Solution of a Multi-Dimensional Two-Term Fractional Order PDE via a Hybrid Methodology: The Caputo–Lucas–Fibonacci Approach with Strang Splitting

Author:

Ahmad Imtiaz1ORCID,Alshammari Abdulrahman Obaid2,Jan Rashid3ORCID,Razak Normy Norfiza Abdul3,Idris Sahar Ahmed4ORCID

Affiliation:

1. Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional (UNITEN), Kajang 43000, Selangor, Malaysia

2. Department of Mathematics, College of Science, Jouf University, Sakaka 72388, Saudi Arabia

3. Institute of Energy Infrastructure (IEI), Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia

4. Faculty of Engineering, Department of Industrial Engineering, King Khalid University, Abha 61421, Saudi Arabia

Abstract

The utilization of time-fractional PDEs in diverse fields within science and technology has attracted significant interest from researchers. This paper presents a relatively new numerical approach aimed at solving two-term time-fractional PDE models in two and three dimensions. We combined the Liouville–Caputo fractional derivative scheme with the Strang splitting algorithm for the temporal component and employed a meshless technique for spatial derivatives utilizing Lucas and Fibonacci polynomials. The rising demand for meshless methods stems from their inherent mesh-free nature and suitability for higher dimensions. Moreover, this approach demonstrates the effective approximation of solutions across both regular and irregular domains. Error norms were used to assess the accuracy of the methodology across both regular and irregular domains. A comparative analysis was conducted between the exact solution and alternative numerical methods found in the contemporary literature. The findings demonstrate that our proposed approach exhibited better performance while demanding fewer computational resources.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3