Abstract
Abstract
Warfarin dosing is challenging due to a multitude of factors affecting its pharmacokinetics (PK) and pharmacodynamics (PD). A novel personalised dosing algorithm predicated on a warfarin PK/PD model and incorporating CYP2C9 and VKORC1 genotype information has been developed for children. The present prospective, observational study aimed to compare the model with conventional weight-based dosing. The study involved two groups of children post-cardiac surgery: Group 1 were warfarin naïve, in whom loading and maintenance doses were estimated using the model over a 6-month duration and compared to historical case-matched controls. Group 2 were already established on maintenance therapy and randomised into a crossover study comparing the model with conventional maintenance dosing, over a 12-month period. Five patients enrolled in Group 1. Compared to the control group, the median time to achieve the first therapeutic INR was longer (5 vs. 2 days), to stable anticoagulation was shorter (29.0 vs. 96.5 days), to over-anticoagulation was longer (15.0 vs. 4.0 days). In addition, median percentage of INRs within the target range (%ITR) and percentage of time in therapeutic range (%TTR) was higher; 70% versus 47.4% and 83.4% versus 62.3%, respectively. Group 2 included 26 patients. No significant differences in INR control were found between model and conventional dosing phases; mean %ITR was 68.82% versus 67.9% (p = 0.84) and mean %TTR was 85.47% versus 80.2% (p = 0.09), respectively. The results suggest model-based dosing can improve anticoagulation control, particularly when initiating and stabilising warfarin dosing. Larger studies are needed to confirm these findings.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Pediatrics, Perinatology, and Child Health
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献