Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery

Author:

Croft HollyORCID,Arabian Joyce,Chen Jing M.,Shang Jiali,Liu Jiangui

Abstract

AbstractSpatial information on crop nutrient status is central for monitoring vegetation health, plant productivity and managing nutrient optimization programs in agricultural systems. This study maps the spatial variability of leaf chlorophyll content within fields with differing quantities of nitrogen fertilizer application, using multispectral Landsat-8 OLI data (30 m). Leaf chlorophyll content and leaf area index measurements were collected at 15 wheat (Triticum aestivum) sites and 13 corn (Zea mays) sites approximately every 10 days during the growing season between May and September 2013 near Stratford, Ontario. Of the 28 sites, 9 sites were within controlled areas of zero nitrogen fertilizer application. Hyperspectral leaf reflectance measurements were also sampled using an Analytical Spectral Devices FieldSpecPro spectroradiometer (400–2500 nm). A two-step inversion process was developed to estimate leaf chlorophyll content from Landsat-8 satellite data at the sub-field scale, using linked canopy and leaf radiative transfer models. Firstly, at the leaf-level, leaf chlorophyll content was modelled using the PROSPECT model, using both hyperspectral and simulated mulitspectral Landsat-8 bands from the same leaf sample. Hyperspectral and multispectral validation results were both strong (R2 = 0.79, RMSE = 13.62 μg/cm2 and R2 = 0.81, RMSE = 9.45 μg/cm2, respectively). Secondly, leaf chlorophyll content was estimated from Landsat-8 satellite imagery for 7 dates within the growing season, using PROSPECT linked to the 4-Scale canopy model. The Landsat-8 derived estimates of leaf chlorophyll content demonstrated a strong relationship with measured leaf chlorophyll values (R2 = 0.64, RMSE = 16.18 μg/cm2), and compared favourably to correlations between leaf chlorophyll and the best performing tested spectral vegetation index (Green Normalised Difference Vegetation Index, GNDVI; R2 = 0.59). This research provides an operational basis for modelling within-field variations in leaf chlorophyll content as an indicator of plant nitrogen stress, using a physically-based modelling approach, and opens up the possibility of exploiting a wealth of multispectral satellite data and UAV-mounted multispectral imaging systems.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

Reference80 articles.

1. Atzberger, C., Jarmer, T., Schlerf, M., Kötz, B., & Werner, W. (2013). Retrieval of wheat bio-physical attributes from hyperspectral data and SAILH + PROSPECT radiative transfer model. In: Proceedings of the 3rd EARSeL Workshop on imaging spectroscopy (pp. 473–482). Citeseer.

2. Blackburn, G. A., & Ferwerda, J. G. (2008). Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sensing of Environment, 112(4), 1614–1632.

3. Chen, M. (2014). Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry,83(1), 317–340.

4. Chen, J. M., Pavlic, G., Brown, L., Cihlar, J., Leblanc, S. G., White, H. P., et al. (2002). Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sensing of Environment,80(1), 165–184.

5. Chen, J. M., Plummer, P. S., Rich, M., Gower, S. T., & Norman, J. M. (1997). Leaf area index measurements. Journal of Geophysical Research,102(D24), 29–429.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3