Weighted Multiple Point Cloud Fusion

Author:

Poku-Agyemang Kwasi NyarkoORCID,Reiterer Alexander

Abstract

AbstractMultiple viewpoint 3D reconstruction has been used in recent years to create accurate complete scenes and objects used for various applications. This is to overcome limitations of single viewpoint 3D digital imaging such as occlusion within the scene during the reconstruction process. In this paper, we propose a weighted point cloud fusion process using both local and global spatial information of the point clouds to fuse them together. The process aims to minimize duplication and remove noise while maintaining a consistent level of details using spatial information from point clouds to compute a weight to fuse them. The algorithm improves the overall accuracy of the fused point cloud while maintaining a similar degree of coverage comparable with state-of-the-art point cloud fusion algorithms.

Funder

Fraunhofer-Institut für Physikalische Messtechnik IPM

Publisher

Springer Science and Business Media LLC

Reference64 articles.

1. Abdelazeem M, Elamin A, Afifi A, El-Rabbany A (2021) Multi-sensor point cloud data fusion for precise 3d mapping. Egypt J Remote Sens Space Sci 24(3):835–844

2. Alba M, Scaioni M et al (2007) Comparison of techniques for terrestrial laser scanning data georeferencing applied to 3‑d modelling of cultural heritage. Int Arch Photogramm Remote Sens Spat Inf Sci 36:W47

3. Altuntas C, Yildiz F, Scaioni M (2016) Laser scanning and data integration for three-dimensional digital recording of complex historical structures: the case of mevlana museum. ISPRS Int J Geo-information 5(2):18

4. Ao S, Hu Q, Yang B, Markham A, Guo Y (2021) Spinnet: Learning a general surface descriptor for 3d point cloud registration. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11753–11762

5. Balta H, Velagic J, Bosschaerts W, De Cubber G, Siciliano B (2018) Fast statistical outlier removal based method for large 3d point clouds of outdoor environments. IFAC PapersOnLine 51(22):348–353

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3