Effect of Temperature Upon Double Diffusive Instability in Navier–Stokes–Voigt Models with Kazhikhov–Smagulov and Korteweg Terms

Author:

Straughan BrianORCID

Abstract

AbstractWe present models for convection in a mixture of viscous fluids when the layer is heated from below and simultaneously the pointwise volume concentration of one of the fluids is heavier below. This configuration produces a problem of competitive double diffusion since heating from below promotes instability, but the greater density of fluid below is stabilizing. The fluids are of linear viscous type which may contain Kelvin–Voigt terms, but density gradients due to the mixture appear strongly in the governing equations. The density gradients give rise to Korteweg stresses, but may also be described by theory due to Kazhikhov and Smagulov. The systems of equations which appear are thus highly nonlinear. The instability surface threshold is calculated and this is found to have a complex nonlinear shape, very different from the linear ones found in classical thermohaline convection in a Navier–Stokes fluid. It is shown that the Kazhikhov–Smagulov terms, Korteweg terms and Kelvin–Voigt term play a key role in acting as stabilizing agents but the associated effect is very nonlinear. Quantitative values of the instability surface are displayed showing the effect Korteweg terms, Kazhikhov–Smagulov terms, and the Kelvin Voigt term have. The nonlinear stability problem is addressed by means of a generalized energy theory deriving different results depending on which underlying theory is employed.

Funder

Leverhulme Trust

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Control and Optimization

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3