Nonlinear stability analysis of double‐diffusive convection in Kelvin–Voigt fluid with chemical reaction

Author:

Basavarajappa Mahanthesh12,Bhatta Dambaru1

Affiliation:

1. School of Mathematical and Statistical Sciences The University of Texas Rio Grande Valley Edinburg Texas USA

2. Center for Mathematical Needs, Department of Mathematics CHRIST (Deemed to be University) Banglore Karnataka India

Abstract

The influence of Rayleigh friction and chemical reaction on the onset of double‐diffusive convection in a Navier–Stokes–Voigt (NSV) fluid layer is investigated by conducting linear instability and nonlinear stability analyses. The fluid layer is subjected to isothermal conditions and chemical equilibrium at the boundaries. The solubility of the dissolved component exhibits a linear dependency on temperature. The analysis is conducted for two distinct cases: the fluid layer is heated and salted from the bottom (case‐1), and the fluid layer is heated from the bottom and salted from the top (case‐2). Analytical expressions for the thermal Rayleigh number are obtained for both linear and nonlinear theories, and these expressions depend on Kelvin–Voigt, Rayleigh friction, solutal Rayleigh, Lewis, Prandtl, and Damkohler numbers. Including the Rayleigh friction term in the NSV fluid model improves the stability of the system and hence instability occurs with less ease. For lower solutal Rayleigh numbers, convection commences in the stationary mode and subsequently transitions to the traveling wave mode occurred in case‐1. The Damkohler number plays a significant role in the linear instability thresholds. It is also found that the Kelvin–Voigt number acts as a stabilizing factor for oscillatory mode convection. The comparison between linear and nonlinear thresholds unveils the region characterized by subcritical instability.

Publisher

Wiley

Reference61 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3