Author:
Zhen Maoding,Zhang Binlin,Rădulescu Vicenţiu D.
Abstract
AbstractIn this paper, we construct the solutions to the following nonlinear Schrödinger system $$\begin{aligned} {\left\{ \begin{array}{ll} -\epsilon ^{2}\Delta u+P(x)u= \mu _{1} u^{p}+\beta u^{\frac{p-1}{2}}v^{\frac{p+1}{2}} \ \ \ \text {in} \ \ \mathbb {R}^{N},\\ -\epsilon ^{2}\Delta v+Q(x)v= \mu _{2} v^{p}+\beta u^{\frac{p+1}{2}}v^{\frac{p-1}{2}} \ \ \ \text {in} \ \ \mathbb {R}^{N}, \end{array}\right. } \end{aligned}$$
-
ϵ
2
Δ
u
+
P
(
x
)
u
=
μ
1
u
p
+
β
u
p
-
1
2
v
p
+
1
2
in
R
N
,
-
ϵ
2
Δ
v
+
Q
(
x
)
v
=
μ
2
v
p
+
β
u
p
+
1
2
v
p
-
1
2
in
R
N
,
where $$3< p<+\infty $$
3
<
p
<
+
∞
, $$N\in \{1,2\}$$
N
∈
{
1
,
2
}
, $$\epsilon >0$$
ϵ
>
0
is a small parameter, the potentials P, Q satisfy $$0<P_{0} \le P(x)\le P_{1}$$
0
<
P
0
≤
P
(
x
)
≤
P
1
and Q(x) satisfies $$0<Q_{0} \le Q(x)\le Q_{1}$$
0
<
Q
0
≤
Q
(
x
)
≤
Q
1
. We construct the solution for attractive and repulsive cases. When $$x_{0}$$
x
0
is a local maximum point of the potentials P and Q and $$P(x_{0})=Q(x_{0})$$
P
(
x
0
)
=
Q
(
x
0
)
, we construct k spikes concentrating near the local maximum point $$x_{0}$$
x
0
. When $$x_{0}$$
x
0
is a local maximum point of P and $$\overline{x}_{0}$$
x
¯
0
is a local maximum point of Q, we construct k spikes of u concentrating at the local maximum point $$x_{0}$$
x
0
and m spikes of v concentrating at the local maximum point $$\overline{x}_{0}$$
x
¯
0
when $$x_{0}\ne \overline{x}_{0}.$$
x
0
≠
x
¯
0
.
This paper extends the main results established by Peng and Wang (Arch Ration Mech Anal 208:305–339, 2013) and Peng and Pi (Discrete Contin Dyn Syst 36:2205–2227, 2016), where the authors considered the case $$N=3$$
N
=
3
, $$p=3$$
p
=
3
.
Funder
Ministry of Education and Research, Romania
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Heilongjiang Youth Development Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization