Abstract
AbstractWe study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation $$\begin{aligned} iu_t+\Delta u=\lambda |u|^p+\mu |\nabla u|^q+w(x),\quad t>0,\, x\in {\mathbb {R}}^N, \end{aligned}$$
i
u
t
+
Δ
u
=
λ
|
u
|
p
+
μ
|
∇
u
|
q
+
w
(
x
)
,
t
>
0
,
x
∈
R
N
,
where $$N\ge 1$$
N
≥
1
, $$p,q>1$$
p
,
q
>
1
, $$\lambda ,\mu \in {\mathbb {C}}$$
λ
,
μ
∈
C
, $$\lambda \ne 0$$
λ
≠
0
, and $$u(0,\cdot ), w\in L^1_{\mathrm{loc}}({\mathbb {R}}^N,{\mathbb {C}})$$
u
(
0
,
·
)
,
w
∈
L
loc
1
(
R
N
,
C
)
. We consider both the cases where $$\mu =0$$
μ
=
0
and $$\mu \ne 0$$
μ
≠
0
, respectively. We establish existence/nonexistence of global weak solutions. In each studied case, we compute the critical exponents in the sense of Fujita, and Lee and Ni. When $$\mu \ne 0$$
μ
≠
0
, we show that the nonlinearity $$|\nabla u|^q$$
|
∇
u
|
q
induces an interesting phenomenon of discontinuity of the Fujita critical exponent.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Physics and Astronomy,General Mathematics
Reference19 articles.
1. Courant Lecture Notes in Mathematics 10;T Cazenave,2003
2. Fino, A.Z., Dannawi, I., Kirane, M.: Blow-up of solutions for semilinear fractional Schrödinger equations. J. Integr. Equ. Appl. 30, 67–80 (2018)
3. Fujita, H.: On the blowing up of solutions of the Cauchy problem for $$u_t=\Delta u+u^{1+\alpha }$$. J. Fac. Sci. Univ. Tokyo Sect. I(13), 109–124 (1966)
4. Ikeda, M., Inui, T.: Small data blow-up of $$L^2$$ or $$H^1$$-solution for the semilinear Schrödinger equation without gauge invariance. J. Evol. Equ. 15, 571–581 (2015)
5. Ikeda, M., Inui, T.: Some non-existence results for the semilinear Schrödinger equation without gauge invariance. J. Math. Anal. Appl. 425, 758–773 (2015)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献