Author:
El-Shiekh Riham A.,Okba Mona M.,Mandour Asmaa A.,Kutkat Omnia,Elshimy Rana,Nagaty Hany A.,Ashour Rehab M.
Abstract
AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the latest arisen contagious respiratory pathogen related to the global outbreak of atypical pneumonia pandemic (COVID-19). The essential oils (EOs) of Eucalyptus camaldulensis, E. ficifolia F. Muell., E. citriodora Hook, E. globulus Labill, E. sideroxylon Cunn. ex Woolls, and E. torquata Luehm. were investigated for its antiviral activity against SARS-CoV-2. The EOs phytochemical composition was determined using GC/MS analysis. Correlation with the explored antiviral activity was also studied using multi-variate data analysis and Pearson’s correlation. The antiviral MTT and cytopathic effect inhibition assays revealed very potent and promising anti SARS-CoV-2 potential for E. citriodora EO (IC50 = 0.00019 µg/mL and SI = 26.27). The multivariate analysis revealed α-pinene, α-terpinyl acetate, globulol, γ -terpinene, and pinocarvone were the main biomarkers for E. citriodora oil. Pearson’s correlation revealed that globulol is the top positively correlated compound in E. citriodora oil to its newly explored potent anti SARS-CoV-2 potential. A molecular simulation was performed on globulol via docking in the main active sites of both SARS-CoV-2 viral main protease (Mpro) and spike protein (S). In silico predictive ADMET study was also developed to investigate the pharmacokinetic profile and predict globulol toxicity. The obtained in silico, in vitro and Pearson’s correlation results were aligned showing promising SARS-CoV-2 inhibitory activity of E. citriodora and globulol. This study is a first record for E. citriodora EO as a novel lead exhibiting potent in vitro, and in silico anti SARS-CoV-2 potential and suggesting its component globulol as a promising candidate for further extensive in silico, in vitro and in vivo anti-COVID studies.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献