Eucalyptus Oils Phytochemical Composition in Correlation with Their Newly Explored Anti-SARS-CoV-2 Potential: in Vitro and in Silico Approaches

Author:

El-Shiekh Riham A.,Okba Mona M.,Mandour Asmaa A.,Kutkat Omnia,Elshimy Rana,Nagaty Hany A.,Ashour Rehab M.

Abstract

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the latest arisen contagious respiratory pathogen related to the global outbreak of atypical pneumonia pandemic (COVID-19). The essential oils (EOs) of Eucalyptus camaldulensis, E. ficifolia F. Muell., E. citriodora Hook, E. globulus Labill, E. sideroxylon Cunn. ex Woolls, and E. torquata Luehm. were investigated for its antiviral activity against SARS-CoV-2. The EOs phytochemical composition was determined using GC/MS analysis. Correlation with the explored antiviral activity was also studied using multi-variate data analysis and Pearson’s correlation. The antiviral MTT and cytopathic effect inhibition assays revealed very potent and promising anti SARS-CoV-2 potential for E. citriodora EO (IC50 = 0.00019 µg/mL and SI = 26.27). The multivariate analysis revealed α-pinene, α-terpinyl acetate, globulol, γ -terpinene, and pinocarvone were the main biomarkers for E. citriodora oil. Pearson’s correlation revealed that globulol is the top positively correlated compound in E. citriodora oil to its newly explored potent anti SARS-CoV-2 potential. A molecular simulation was performed on globulol via docking in the main active sites of both SARS-CoV-2 viral main protease (Mpro) and spike protein (S). In silico predictive ADMET study was also developed to investigate the pharmacokinetic profile and predict globulol toxicity. The obtained in silico, in vitro and Pearson’s correlation results were aligned showing promising SARS-CoV-2 inhibitory activity of E. citriodora and globulol. This study is a first record for E. citriodora EO as a novel lead exhibiting potent in vitro, and in silico anti SARS-CoV-2 potential and suggesting its component globulol as a promising candidate for further extensive in silico, in vitro and in vivo anti-COVID studies.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3