Characterizing Substrate-Borne Vibrational Mating Signals Produced by Pear Psylla, Cacopsylla pyricola (Hemiptera: Psyllidae)

Author:

Jocson Dowen Mae I.ORCID,Gonzales Mark T.,Horton David R.,Nottingham Louis B.,Beers Elizabeth H.,Oeller Liesl C.,Crowder David W.

Abstract

AbstractTactics that manipulate insect behavior are a component of many pest management strategies. Pheromone-based mating disruption is one such tactic widely used in agricultural systems, but few studies have assessed disrupting other mate communication mechanisms, such as acoustic signals. The most destructive pear pest in the Pacific Northwest USA, pear psylla (Cacopsylla pyricola) is believed to use acoustic signals to find mates, making it a candidate for this type of disruption. This species has two adult morphs, overwintering adults (winterforms) that emerge in the spring and subsequent generations (summerforms). Our study characterized the mating signals for both sexes and morphs of pear psylla, and assessed whether temperature and previous exposure to adult conspecifics altered signals and likelihood of signaling. While there are descriptions for acoustic signals of other psyllid species, this study provides the first evidence that C. pyricola communicates acoustically. The two sexes communicate via duetting; males signal to attract a female and the female signals back if she is receptive for mating. We showed that both morphotypes’ male signals contain a group of chirps followed by a trill, while females respond with chirps. Male signal trills differed significantly in frequency (Hz) between winterform and summerform psylla. The signal frequency among morphs also had a positive linear relationship with temperature, suggesting that dissimilarity in signals among morphs had some relationship to temperature. Males were more likely to signal when they had previous exposure to females compared to males without exposure to females. Our results provide new information on how pear psylla communicate acoustically for mating, advancing the potential to develop mating disruption strategies for integrated pest management (IPM).

Funder

Washington State Commission on Pesticide Registration

National Institute of Food and Agriculture

Fresh and Processed Pear Research Commission

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3