Using Projection-Based Clustering to Find Distance- and Density-Based Clusters in High-Dimensional Data

Author:

Thrun Michael C.ORCID,Ultsch Alfred

Abstract

AbstractFor high-dimensional datasets in which clusters are formed by both distance and density structures (DDS), many clustering algorithms fail to identify these clusters correctly. This is demonstrated for 32 clustering algorithms using a suite of datasets which deliberately pose complex DDS challenges for clustering. In order to improve the structure finding and clustering in high-dimensional DDS datasets, projection-based clustering (PBC) is introduced. The coexistence of projection and clustering allows to explore DDS through a topographic map. This enables to estimate, first, if any cluster tendency exists and, second, the estimation of the number of clusters. A comparison showed that PBC is always able to find the correct cluster structure, while the performance of the best of the 32 clustering algorithms varies depending on the dataset.

Funder

Philipps-Universität Marburg

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Psychology (miscellaneous),Mathematics (miscellaneous)

Reference105 articles.

1. Adolfsson, A., Ackerman, M., & Brownstein, N. C. (2019). To cluster, or not to cluster: an analysis of clusterability methods. Pattern Recognition, 88, 13–26.

2. Aeberhard, S., Coomans, D., & De Vel, O. (1992). Comparison of classifiers in high dimensional settings, technical report 92–02. North Queensland: James Cook University of North Queensland, Department of Computer Science and Department of Mathematics and Statistics.

3. Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., & Park, J.S. (1999). Fast algorithms for projected clustering. Proc. ACM SIGMOD International Conference on Management of Data (Vol. 28, pp. 61–72) Philadelphia, Pennsylvania: Association for Computing Machinery.

4. Aggarwal, C. C., & Yu, P. S. (2000). Finding generalized projected clusters in high dimensional spaces. In Proceedings of the ACM SIGMOD international conference on management of data (pp. 70–81). New York: ACM.

5. Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM SIGMOD international conference on management of data (pp. 94–105). Seattle: ACM.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3