Author:
Botelho Silvia Silva da Costa,Drews Junior Paulo Lilles Jorge,Figueiredo Mônica da Silva,Rocha Celina Haffele Da,Oliveira Gabriel Leivas
Abstract
Abstract
The use of Autonomous Underwater Vehicles (AUVs) for underwater tasks is a promising robotic field. These robots can carry visual inspection cameras. Besides serving the activities of inspection and mapping, the captured images can also be used to aid navigation and localization of the robots. Visual odometry is the process of determining the position and orientation of a robot by analyzing the associated camera images. It has been used in a wide variety of non-standard locomotion robotic methods. In this context, this paper proposes an approach to visual odometry and mapping of underwater vehicles. Supposing the use of inspection cameras, this proposal is composed of two stages: i) the use of computer vision for visual odometry, extracting landmarks in underwater image sequences and ii) the development of topological maps for localization and navigation. The integration of such systems will allow visual odometry, localization and mapping of the environment. A set of tests with real robots was accomplished, regarding online and performance issues. The results reveals an accuracy and robust approach to several underwater conditions, as illumination and noise, leading to a promissory and original visual odometry and mapping technique.
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Arredondo M and Lebart K. A methodology for the systematic assessment of underwater video processing algorithms.Oceans 2005; 1:362–367.
2. Bay H, Tuytelaars T, Booktitle L and Gool L Van. Surf: speeded up robust features. In:Proceedings of 9 European Conference on Computer Vision; 2006; Graz, Austria. Springer: Lecture Notes in Computer Science; 2006. P. 404–417.
3. Booij O, Terwijn B, Zivkovic Z and Krose B. Navigation using an appearance based topological map. In:Proceedings of IEEE International Conference on Robotics and Automation; 2007; Roma, Italy. Amsterdam: Publications of the Universiteit van Amsterdam; 2007. p. 3927–3932.
4. Centeno M.Rovfurg-II: projeto e construção de um veículo subaquático não tripulado de baixo custo. [Master thesis]. Rio Grande: Universidade Federal do Rio Grande; 2007.
5. Dechter R and Pearl J. Generalized best-first search strategies and the optimality af a*.Journal of the Association for Computing Machinery 1985; 32(3):505–536.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献