1. Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72.
2. Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2007). The transition to formal proof in geometry. In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 305–323). Rotterdam: Sense.
3. Balacheff, N., & Gaudin, N. (2003). Conceptual framework. In S. Soury-Lavergne (Ed.), Baghera assessment project: Designing a hybrid and emergent educational society. Les Cahiers du Laboratoire Leibniz, 81 (pp. 3–22). Grenoble, France: Laboratoire Leibniz-IMAG.
4. Balacheff, N., & Gaudin, N. (2009). Modeling students’ conceptions: The case of function. CBMS Issues in Mathematics Education. 16. American Mathematical Society.
5. Balacheff, N., & Kaput, J. (1996). Computer-based learning environments in mathematics. In A. Bishop, et al. (Eds.), International handbook of mathematics education (pp. 69–501). The Netherlands: Kluwer.