Automatic ship collision avoidance using deep reinforcement learning with LSTM in continuous action spaces

Author:

Sawada RyoheiORCID,Sato Keiji,Majima Takahiro

Abstract

AbstractThis paper presents an automatic collision avoidance algorithm for ships using a deep reinforcement learning (DRL) in continuous action spaces. Obstacle zone by target (OZT) is used to compute an area where a collision will happen in the future based on dynamic information of ships. Agents of DRL detects the approach of multiple ships using a virtual sensor called the grid sensor. Agents learned collision avoidance maneuvering through Imazu problem, which is a scenario set of ship encounter situations. In this study, we propose a new approach for collision avoidance with a longer safe passing distance using DRL. We develop a novel method named inside OZT that expands OZT to improve the consistency of learning. We redesign the network using the long short-term memory (LSTM) cell and carried out training in continuous action spaces to train a model with longer safe distance than the previous study. The bow cross range in collision detection proposed in this paper is effective to COLREGs-compliant collision avoidance. The trained model has passed all scenarios of Imazu problem. The model is also validated by a test scenario which includes more ships than each scenario of Imazu problem.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Ocean Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3