Abstract
AbstractThis paper presents an automatic collision avoidance algorithm for ships using a deep reinforcement learning (DRL) in continuous action spaces. Obstacle zone by target (OZT) is used to compute an area where a collision will happen in the future based on dynamic information of ships. Agents of DRL detects the approach of multiple ships using a virtual sensor called the grid sensor. Agents learned collision avoidance maneuvering through Imazu problem, which is a scenario set of ship encounter situations. In this study, we propose a new approach for collision avoidance with a longer safe passing distance using DRL. We develop a novel method named inside OZT that expands OZT to improve the consistency of learning. We redesign the network using the long short-term memory (LSTM) cell and carried out training in continuous action spaces to train a model with longer safe distance than the previous study. The bow cross range in collision detection proposed in this paper is effective to COLREGs-compliant collision avoidance. The trained model has passed all scenarios of Imazu problem. The model is also validated by a test scenario which includes more ships than each scenario of Imazu problem.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Ocean Engineering,Oceanography
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献