TORCH: a TOSCA-Based Orchestrator of Multi-Cloud Containerised Applications

Author:

Tomarchio OrazioORCID,Calcaterra Domenico,Di Modica GiuseppeORCID,Mazzaglia Pietro

Abstract

AbstractThe growth in the number and types of cloud-based services offered to IT customers is supported by the constant entry of new actors in the market and the consolidation of disruptive technologies such as AI, Big Data and Micro-services. From the customer’s perspective, in a market landscape where the cloud offer is highly diversified due to the presence of multiple competing service providers, picking the service that best accommodate their specific needs is a critical challenge. Once the choice is made, so called “cloud orchestration tools” (orchestrators) are required to take care of the customer application’s life-cycle. While big players offer their customers proprietary orchestrators, in the literature quite a number of open-source initiatives have launched multi-cloud orchestrators capable of transparently managing applications on top of the most representative cloud platforms. In this paper, we propose TORCH, a TOSCA-based framework for the deployment and orchestration of cloud applications, both classical and containerised, on multiple cloud providers. The framework assists the cloud customer in defining application requirements by using standard specification models. Unlike other multi-cloud orchestrators, adopts a strategy that separates the provisioning workflow from the actual invocation of proprietary cloud services API. The main benefit is the possibility to add support to any cloud platforms at a very low implementation cost. In the paper, we present a prototypal implementation of TORCH and showcase its interaction with two different container-based cluster platforms. Preliminary performance tests conducted on a small-scale test-bed confirm the potential of TORCH.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective pedestrian tracking method based on YOLOv8 and improved DeepSORT;Mathematical Biosciences and Engineering;2024

2. A Systematic Mapping Study of Italian Research on Workflows;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

3. Towards Exogenous Coordination of Concurrent Cloud Applications;International Journal of Software Engineering and Knowledge Engineering;2023-10-05

4. Fog computing out of the box: Dynamic deployment of fog service containers with TOSCA;International Journal of Network Management;2023-08-24

5. Application and Infrastructure-Aware Orchestration in the Cloud-to-Edge Continuum;2023 IEEE 16th International Conference on Cloud Computing (CLOUD);2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3