FogDEFTKube: Standards‐compliant dynamic deployment of fog service containers

Author:

Thalla Rajesh1,Srirama Satish Narayana1

Affiliation:

1. School of Computer and Information Sciences University of Hyderabad Hyderabad India

Abstract

AbstractThe traditional cloud‐centric approach in IoT applications lack the speed and efficiency required for time‐critical tasks, resulting in network inefficiencies. To address this, the notions of Edge and Fog computing have emerged as alternatives. Fog computing facilitates the deployment of services and applications closer to the network's edge, lowering latency and allowing real‐time capabilities. It enhances reliability, fault tolerance, and connectivity in areas with spotty network coverage. Despite the fact that fog computing overcomes the limitations of cloud‐centric IoT processing, its adoption faces challenges like platform independence, interoperability, and portability. To tackle these challenges, the FogDEFT (Fog computing out of the box: Dynamic dEployment of Fog service containers with TOSCA) framework was developed. It complies to OASIS‐TOSCA standards and guarantees dynamic deployment of fog services on resource‐constrained devices while leveraging Docker containerization technology to ensure platform independence and interoperability. Due to its tight coupling with Docker Swarm, which is designed for medium‐sized deployments, the fogDEFT framework is constrained by Docker Swarm's limitations, hindering its ability to effectively manage large‐scale, automated, and resource‐efficient microservice deployments. To address these limitations, we propose FogDEFTKube, an extension of the FogDEFT architecture that incorporates Kubernetes for orchestration, Jenkins for continuous integration and deployment, and a comprehensive redefinition of the core capabilities of the FogDEFT architecture. This offers a promising solution that supports Kubernetes for handling scalable and highly available fog applications with ease while offering CI/CD. FogDEFTKube simplifies the modeling and deployment of fog services while abstracting the complexities of underlying fog networks.

Funder

Science and Engineering Research Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3