Interactive simulation of quantum key distribution protocols and application in Wi-Fi networks

Author:

Escanez-Exposito DanielORCID,Caballero-Gil Pino,Martín-Fernández Francisco

Abstract

AbstractKey distribution allows two parties to produce and share a random secret key, which can then be used to encrypt and decrypt messages with symmetric cryptosystems. Thus, this is often considered the most fundamental cryptographic primitive of secret communications, especially in wireless networks. While the traditional method is based on the assumption about the hardness of some mathematical problem, the quantum key distribution (QKD) involves quantum mechanical components and can be considered unconditionally secure. This paper presents an implementation of the two QKD protocols known as E91 and B92, which includes an intuitive class structure representing the different relationships between the two collaborating entities in the simulated communication. In addition, this implementation made it possible to deepen the study and comparison of both algorithms. The main details of the implementation are described here, together with some conclusions obtained from the research carried out on its functionalities, illustrated in colorful heat maps. This work also includes a preliminary analysis of the potential of the application of these QKD protocols for their hybrid application in Wi-Fi networks based on the IEEE 802.11 standard.

Funder

Universidad de la Laguna

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimating Interception Density in the BB84 Protocol: A Study with a Noisy Quantum Simulator;Future Internet;2024-08-02

2. A Smart Survey Analysis using Wireless Sensor Networks in Agriculture;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

3. Using Game-Based Learning and Quantum Computing to Enhance STEAM Competencies in K-16 Education;IEEE Transactions on Education;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3