1. Bando, S., Mabuchi, T.: Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebraic geometry, Sendai, 1985, 11–40. Advanced Studies in Pure Mathematics 10, North-Holland, Amsterdam (1987)
2. Berman RAnalytic torsion, vortices and positive Ricci curvature. arXiv: 1006.2988
3. Berman, R.A.: Thermodynamical formalism for Monge–Ampere equations, Moser–Trudinger inequalities and Kähler–Einstein metrics. Adv. Math. 248, 1254–1297 (2013)
4. Berman, R.J., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge–Ampere equations. Publ. Math. Inst. Hautes Études Sci. 117, 179–245 (2013)
5. Berman, R.J., Boucksom, S., Eyssidieux, P.H., Guedj, V., Zeriahi, A.: Kähler–Ricci flow and Ricci iteration on log-Fano varieties. arXiv: 1111.7158