Author:
Meeks William H.,Mira Pablo,Pérez Joaquín,Ros Antonio
Abstract
AbstractWe prove that two spheres of the same constant mean curvature in an arbitrary homogeneous three-manifold only differ by an ambient isometry, and we determine the values of the mean curvature for which such spheres exist. This gives a complete classification of immersed constant mean curvature spheres in three-dimensional homogeneous manifolds.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Abresch, U., Rosenberg, H.: A Hopf differential for constant mean curvature surfaces in $${{\mathbb{S}}}^2\times {\mathbb{R}}$$ and $${\mathbb{H}}^2\times {\mathbb{R}}$$. Acta Math. 193(2), 141–174 (2004)
2. Abresch, U., Rosenberg, H.: Generalized Hopf differentials. Mat. Contemp. 28, 1–28 (2005)
3. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. 36, 235–249 (1957)
4. Bers, L.: Local behavior of solutions of general linear elliptic equations. Commun. Pure Appl. Math. 8, 473–496 (1955)
5. Cheng, S.Y.: Eigenfunctions and nodal sets. Comment. Math. Helv. 51(1), 43–55 (1976)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献