A duality for prescribed mean curvature graphs in Riemannian and Lorentzian Killing submersions

Author:

Del Prete Andrea1ORCID,Lee Hojoo2ORCID,Manzano José Miguel3ORCID

Affiliation:

1. Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica Università dell'Aquila dell'Aquila Italy

2. Division of General Mathematics School of Liberal Arts Education University of Seoul Nowon‐gu Seoul South Korea

3. Departamento de Matemáticas Universidad de Jaén Jaén Spain

Abstract

AbstractWe develop a conformal duality for space‐like graphs in Riemannian and Lorentzian three‐manifolds that admit a Riemannian submersion over a Riemannian surface whose fibers are the integral curves of a Killing vector field, which is time‐like in the Lorentzian case. The duality swaps mean curvature and bundle curvature and sends the length of the Killing vector field to its reciprocal while keeping invariant the base surface. We obtain two consequences of this result. On the one hand, we find entire graphs in Lorentz–Minkowski space with prescribed mean curvature a bounded function with bounded gradient. On the other hand, we obtain conditions for the existence and nonexistence of entire graphs which are related to a notion of the critical mean curvature.

Publisher

Wiley

Subject

General Mathematics

Reference24 articles.

1. Calabi–Bernstein results for maximal surfaces in Lorentzian product spaces

2. Spacelike hypersurfaces with constant mean curvature in Lorentz space, VIII School on Differential Geometry;Barbosa J. L.;Mat. Contemp.,1993

3. On the electrostatic Born–Infeld equation with extended charges;Bonheure D.;Commun. Math. Phys.,2016

4. J.Byeon N.Ikoma A.Malchiodi andL.Mari Existence and regularity for prescribed Lorentzian mean curvature hypersurfaces and the Born–Infeld model arXiv:2112.11283.

5. Proc. Sympos. Pure Math.;Calabi E.,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3