Data-Centric Artificial Intelligence

Author:

Jakubik Johannes,Vössing Michael,Kühl Niklas,Walk Jannis,Satzger Gerhard

Abstract

AbstractData-centric artificial intelligence (data-centric AI) represents an emerging paradigm that emphasizes the importance of enhancing data systematically and at scale to  build effective and efficient AI-based systems. The novel paradigm complements recent model-centric AI, which focuses on improving the performance of AI-based systems based on changes in the model using a fixed set of data. The objective of this article is to introduce practitioners and researchers from the field of Business and Information Systems Engineering (BISE) to data-centric AI. The paper defines relevant terms, provides key characteristics to contrast the paradigm of data-centric AI with the model-centric one, and introduces a framework to illustrate the different dimensions of data-centric AI. In addition, an overview of available tools for data-centric AI is presented and this novel paradigm is differenciated from related concepts. Finally, the paper discusses the longer-term implications of data-centric AI for the BISE community.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. Abbasi A, Sarker S, Chiang RH (2016) Big data research in information systems: toward an inclusive research agenda. J Assoc Inf Syst 17(2):1–32

2. Abedjan Z, Golab L, Naumann F, Papenbrock T (2022) Data profiling. Springer, Heidelberg

3. Alpaydin E (2020) Introduction to machine learning. MIT Press, Cambridge

4. Amrani H (2021) Model-centric and data-centric AI for personalization in human activity recognition. Ph.D. thesis, University of Milano-Bicocca

5. Aramburu MJ, Berlanga R, Lanza-Cruz I (2023) A data quality multidimensional model for social media analysis. Bus Inf Syst Eng 1–23

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-related concepts for artificial intelligence education in K-12;Computers and Education Open;2024-12

2. Data-related practices for creating Artificial Intelligence systems in K-12;Proceedings of the 19th WiPSCE Conference on Primary and Secondary Computing Education Research;2024-09-16

3. DCAI-CLUD: a data-centric framework for the construction of land-use datasets;International Journal of Geographical Information Science;2024-08-05

4. Representation Debiasing of Generated Data Involving Domain Experts;Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-27

5. A Data-Centric AI Paradigm for Socio-Industrial and Global Challenges;Electronics;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3