Abstract
AbstractSnow cover duration is a crucial climate change indicator. However, measurements of days with snow cover on the ground (DSG) are limited, especially in complex terrains, and existing measurements are fragmentary and cover only relatively short time periods. Here, we provide observational and modelling evidence that it is possible to produce reliable time-series of DSG for Italy based on instrumental measurements, and historical documentary data derived from various sources, from a limited set of stations and areas in the central-southern Apennines (CSA) of Italy. The adopted modelling approach reveals that DSG estimates in most settings in Italy can be driven by climate factors occurring in the CSA. Taking into account spatial scale-dependence, a parsimonious model was developed by incorporating elevation, winter and spring temperatures, a large-scale circulation index (the Atlantic Multidecadal Variability, AMV) and a snow-severity index, with in situ DSG data, based on a core snow cover dataset covering 97 years (88% coverage in the 1907–2018 period and the rest, discontinuously from 1683 to 1895, from historical data of the Benevento station). The model was validated on the basis of the identification of contemporary snow cover patterns and historical evidence of summer snow cover in high massifs. Beyond the CSA, validation obtained across terrains of varying complexity in both the northern and southern sectors of the peninsula indicate that the model holds potential for applications in a broad range of geographical settings and climatic situations of Italy. This article advances the study of past, present and future DSG changes in the central Mediterranean region.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献