On the role of local and large-scale atmospheric variability in snow cover duration: a case study of Montevergine Observatory (Southern Italy)

Author:

Annella Clizia,Budillon Giorgio,Capozzi VincenzoORCID

Abstract

Abstract Snow cover plays an important role in Earth’s climate, hydrological and biological systems as well as in socio-economical dynamics, especially in mountain regions. The objective of this work is to provide the first evidence about snow cover variability in the Italian Southern Apennines and investigate the forcing mechanisms controlling it. To this purpose, we present a new historical long-term (from 1931 to 2008) series of snow cover duration data observed at Montevergine Observatory, a mountainous site located at 1280 m above sea level. From the analysis of this series, it emerged a strong interannual variability, an overall reduction over time of snow cover days until mid-1990s and a recovery in the last 10-years. We model snow cover duration employing a multiple linear regression, considering both local and large-scale climate factors as explanatory variables. Our findings show that snow cover duration appears to be primarily dependent on temperature, which exhibits a positive trend in the considered time interval. However, the interannual and decadal fluctuations of the examined parameter are also strongly modulated by two large-scale patterns, the Arctic Oscillation and the Eastern Mediterranean Pattern. In the last segment of the considered time interval, the increase in temperature is not consistent with the dominant patterns of large-scale indices, which proved to be more effective in capturing the recent rebound in snow cover duration. The results demonstrate that snow cover duration is linked to the global warming by a non-trivial relationship and that its behaviour, in specific periods, can be largely independent from rising temperature tendency, according to the prevailing phase of large-scale atmospheric patterns.

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3