Quantifying future water-saving potential under climate change and groundwater recharge scenarios in Lower Chenab Canal, Indus River Basin

Author:

Shafeeque Muhammad,Hafeez Mohsin,Sarwar Abid,Arshad Arfan,Khurshid Tahira,Asim Muhammad Irfan,Ali Shoaib,Dilawar Adil

Abstract

AbstractQuantifying water-saving potential (WSP) is crucial for sustainable water resource management in canal command areas and river basins. Previous studies have partially or fully ignored the importance of groundwater in WSP assessments, particularly in irrigated areas. This study is aimed at quantifying WSP in the Lower Chenab Canal (LCC) command area of the Indus River Basin, Pakistan, under various scenarios of future climate change and groundwater recharge. These quantifications are conducted using an empirical model based on the Budyko theory. The model was forced using observed, remote sensing, and CMIP6 future climate data for two Shared Socioeconomic Pathways (SSP245 and SSP585) and their ensembles (cold-dry, cold-wet, warm-dry, and warm-wet) for possible futures. The results showed that the average WSP in the LCC command area was 466 ± 48 mm/year during the historical period (2001–2020). The WSP is projected to decrease by – 68 ± 3% under the warm-dry ensemble scenario (SSP245 and SSP585) and – 48 ± 13% under the ensembled cold-wet scenario by 2100. The results also demonstrated that WSP could be increased by up to 70 ± 9% by artificially recharging 20% of the abstracted groundwater per year in the LCC command area by the late twenty-first century. Our findings highlight the importance of adopting artificial groundwater recharge to enhance the WSP and sustainably manage water resources in the LCC command area. Policymakers should consider these findings when deciding on water resource management in the Indus River Basin.

Funder

CGIAR's Initiative on Water, Energy Food, and Ecosystems (WEFE) NEXUS Gains

The Federal Ministry of Education (BMBF) Germany

Universität Bremen

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3