Integrated Geospatial and Geostatistical Multi-Criteria Evaluation of Urban Groundwater Quality Using Water Quality Indices

Author:

Naz Iram1ORCID,Fan Hong1,Aslam Rana Waqar1ORCID,Tariq Aqil2,Quddoos Abdul1ORCID,Sajjad Asif3ORCID,Soufan Walid4ORCID,Almutairi Khalid F.4ORCID,Ali Farhan5

Affiliation:

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, China

2. Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, 775 Stone Boulevard, Starkville, MS 39762-9690, USA

3. Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan

4. Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

5. College of Earth & Environmental Science, University of the Punjab, Lahore 54000, Pakistan

Abstract

Groundwater contamination poses a severe public health risk in Lahore, Pakistan’s second-largest city, where over-exploited aquifers are the primary municipal and domestic water supply source. This study presents the first comprehensive district-wide assessment of groundwater quality across Lahore using an innovative integrated approach combining geographic information systems (GIS), multi-criteria decision analysis (MCDA), and water quality indexing techniques. The core objectives were to map the spatial distributions of critical pollutants like arsenic, model their impacts on overall potability, and evaluate targeted remediation scenarios. The analytic hierarchy process (AHP) methodology was applied to derive weights for the relative importance of diverse water quality parameters based on expert judgments. Arsenic received the highest priority weight (0.28), followed by total dissolved solids (0.22) and hardness (0.15), reflecting their significance as health hazards. Weighted overlay analysis in GIS delineated localized quality hotspots, unveiling severely degraded areas with very poor index values (>150) in urban industrial zones like Lahore Cantt, Model Town, and parts of Lahore City. This corroborates reports of unregulated industrial effluent discharges contributing to aquifer pollution. Prospective improvement scenarios projected that reducing heavy metals like arsenic by 30% could enhance quality indices by up to 20.71% in critically degraded localities like Shalimar. Simulating advanced multi-barrier water treatment processes showcased an over 95% potential reduction in arsenic levels, indicating the requirement for deploying advanced oxidation and filtration infrastructure aligned with local contaminant profiles. The integrated decision support tool enables the visualization of complex contamination patterns, evaluation of remediation options, and prioritizing risk-mitigation investments based on the spatial distribution of hazard exposures. This framework equips urban planners and utilities with critical insights for developing targeted groundwater quality restoration policies through strategic interventions encompassing treatment facilities, drainage infrastructure improvements, and pollutant discharge regulations. Its replicability across other regions allows for tackling widespread groundwater contamination challenges through robust data synthesis and quantitative scenario modeling capabilities.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3