Author:
Hashemi Masoumeh,Sepaskhah Ali Reza
Funder
Iran National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Abrishami N, Sepaskhah AR, Shahrokhnia MH (2019) Estimating wheat and maize daily evapotranspiration using artificial neural network. Theor Appl Climatol 135(3-4):945–958
2. Aghajanloo MB, Sabziparvar AA, Hosseinzadeh-Talaee P (2012) Artificial neural network–genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran. Neural Comput & Applic 23:1387–1393.
https://doi.org/10.1007/s00521-012-1087-y
3. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, vol 300. FAO, Rome, p 654
4. Ambas VT, Baltas E (2012) Sensitivity analysis of different evapotranspiration methods using a new sensitivity coefficient. Global NEST 14(3):335–343
5. Beven K (1979) A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. J Hydrol 44:169–190
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献