Balancing Results from AI-Based Geostatistics versus Fuzzy Inference by Game Theory Bargaining to Improve a Groundwater Monitoring Network

Author:

Hashemi Masoumeh1ORCID,Peralta Richard C.2,Yost Matt1

Affiliation:

1. Plant, Soil & Climate Department, Utah State University, Logan, UT 84322, USA

2. Civil and Environmental Engineering Department, Utah State University, Logan, UT 843322, USA

Abstract

An artificial intelligence-based geostatistical optimization algorithm was developed to upgrade a test Iranian aquifer’s existing groundwater monitoring network. For that aquifer, a preliminary study revealed that a Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) more accurately determined temporally average water table elevations than geostatistical kriging, spline, and inverse distance weighting. Because kriging is usually used in that area for water table estimation, the developed algorithm used MLP-ANN to guide kriging, and Genetic Algorithm (GA) to determine locations for new monitoring well location(s). For possible annual fiscal budgets allowing 1–12 new wells, 12 sets of optimal new well locations are reported. Each set has the locations of new wells that would minimize the squared difference between the time-averaged heads developed by kriging versus MLP-ANN. Also, to simultaneously consider local expertise, the algorithm used fuzzy inference to quantify an expert’s satisfaction with the number of new wells. Then, the algorithm used symmetric bargaining (Nash, Kalai–Smorodinsky, and area monotonic) to present an upgradation strategy that balanced professional judgment and heuristic optimization. In essence, the algorithm demonstrates the systematic application of relatively new computational practices to a common situation worldwide.

Funder

Qazvin Regional Water Company

Utah Agricultural Experiment Station

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3