Relationship between the thermal condition of the Tibetan Plateau and precipitation over the region from eastern Ukraine to North Caucasus during summer

Author:

Chen JunmingORCID,Yue Xiaoyuan,Liu Ge,Nan Sulan

Abstract

AbstractRemarkable climate anomalies occurred in Europe in recent years, but the reasons are not entirely disclosed. This entails further exploring the physical mechanism of anomalous climate variability over Europe on the basis of previous studies. Using NCEP-NCAR reanalysis and CMAP precipitation datasets, we investigated the relationship between the thermal condition of the Tibetan Plateau (TP) and precipitation over Europe during summer and related mechanisms behind through observational analyses and simulation experiments. The results show that the summer TP surface air temperature (SAT) is significantly correlated with the simultaneous precipitation over the region from eastern Ukraine to the North Caucasus (EUNC; 43°–51° N, 34°–46° E) during the period 1979–2017. The effect of anomalous TP heating plays, to some extent, an active role in linking the summer TP SAT with EUNC precipitation. The variability of the TP SAT is a result of the anomalous TP heating, but it can reflect the variability in temperature of a thick tropospheric air column over the TP well. Corresponding to higher (lower) TP SAT, the higher (lower) temperature anomaly appears over the TP and extends westwards through the transport of anomalous temperature fluxes from the TP to the EUNC regions in the upper troposphere, resulting in the expansion (withdrawal) of the South Asian high (SAH) and associated less (more) precipitation over the EUNC region. Numerical simulations basically reproduce the above-mentioned physical process, which confirms that, through stimulating the variability of upper-tropospheric temperatures over the TP and a larger area to its west and associated upstream large-scale atmospheric circulation, the summer TP’s thermal condition can modulate and expand the impact of the SAH to the EUNC region and therefore affect the concurrent precipitation in situ. This study implies an importance of the thermal anomaly of the TP to the variability of EUNC precipitation during summer.

Funder

the National Science Foundation of China

the Strategic Priority Research Program of Chinese Academy of Sciences

the National Key Research and Development Program of China

the Science and Technology Development Fund of CAMS

the Basic Research Fund of CAMS

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3