Robust bias-correction of precipitation extremes using a novel hybrid empirical quantile-mapping method

Author:

Holthuijzen MaikeORCID,Beckage Brian,Clemins Patrick J.,Higdon Dave,Winter Jonathan M.

Abstract

AbstractHigh-resolution, daily precipitation climate products that realistically represent extremes are critical for evaluating local-scale climate impacts. A popular bias-correction method, empirical quantile mapping (EQM), can generally correct distributional discrepancies between simulated climate variables and observed data but can be highly sensitive to the choice of calibration period and is prone to overfitting. In this study, we propose a hybrid bias-correction method for precipitation, EQM-LIN, which combines the efficacy of EQM for correcting lower quantiles, with a robust linear correction for upper quantiles. We apply both EQM and EQM-LIN to historical daily precipitation data simulated by a regional climate model over a region in the northeastern USA. We validate our results using a five-fold cross-validation and quantify performance of EQM and EQM-LIN using skill score metrics and several climatological indices. As part of a high-resolution downscaling and bias-correction workflow, EQM-LIN significantly outperforms EQM in reducing mean, and especially extreme, daily distributional biases present in raw model output. EQM-LIN performed as good or better than EQM in terms of bias-correcting standard climatological indices (e.g., total annual rainfall, frequency of wet days, total annual extreme rainfall). In addition, our study shows that EQM-LIN is particularly resistant to overfitting at extreme tails and is much less sensitive to calibration data, both of which can reduce the uncertainty of bias-correction at extremes.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3