DArTseq molecular markers associated with the piping leaf margin phenotype in pineapple (Ananas comosus L.)

Author:

Sanewski Garth M.ORCID

Abstract

AbstractThis study sought to understand the genetic basis of the piping leaf margin phenotype in pineapple. To achieve this aim, a genome-wide association study (GWAS) using mixed linear regression and logistic regression analysis was conducted on three pineapple diversity panels including seedling populations segregating for spiny, spiny-tip and piping leaf margins. This study identified single nucleotide polymorphism (SNP) markers associated with the piping and spiny-tip leaf margin phenotypes. A broad quantitative trait locus (QTL) positioned on chromosome 23 between positions 240,475 and 2,369,197 bp was the most highly associated with piping leaf margin in all analyses. Major candidate genes proposed are a Zinc finger protein 2, a Zinc finger protein 3, a WUSCHEL-related homeobox 2, a WUSCHEL-related homeobox 1 and a Zinc finger protein CONSTANS-like. Some other genes of a lower association, linked or nearby genes of interest, are also considered potentially involved to varying degrees. All candidate genes are known to be involved in aspects of stem cell maintenance, cell proliferation, epidermal cell differentiation, organogenesis, leaf polarity, cell wall modification or hormone signalling. It is possible each plays a role in either differentiation or morphological aspects of the spiny-tip and piping leaf margin phenotypes. It is expected the relative role of each associated gene might vary with genetic background.

Funder

Hort Innovation

Department of Agriculture & Forestry, Queensland Government

State of Queensland acting through the Department of Agriculture and Fisheries

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3