Timing and origin of skarn-, greisen-, and vein-hosted tin mineralization at Geyer, Erzgebirge (Germany)

Author:

Meyer NicolasORCID,Markl Gregor,Gerdes Axel,Gutzmer Jens,Burisch Mathias

Abstract

AbstractThis contribution presents new insights into the origin and age relationships of the Geyer tin deposit in the Erzgebirge, Germany. Tin mineralization occurs in skarns, greisen, and in cassiterite-bearing fluorite-quartz veins. Skarn alteration replaces marble layers of the Cambrian Jáchymov Group and occurs in two clearly distinct stages. The first skarn stage forms skarnoid textured assemblages of clinopyroxene, garnet, and wollastonite with no tin phases recognized. Garnet U-Pb ages of this skarn stage (~322 Ma) relate the earlier skarn stage to the emplacement of the Ehrenfriedersdorf granite (~324 to 317 Ma). The second stage of skarn alteration is marked by the occurrence of malayaite and cassiterite associated with garnet recording ages of 307 to 301 Ma. Greisen- and skarn-hosted cassiterite-bearing veins provide U-Pb ages in the range of 308 to 305 Ma, relating greisenization and vein formation to the same magmatic-hydrothermal event as the second skarn stage. This suggests that tin mineralization at Geyer is related to a distinctly younger magmatic-hydrothermal event, clearly postdating the Ehrenfriedersdorf granite, which was previously assumed as the source of the tin-rich fluids. Fluid inclusions show salinities in the range of 1.0 to 31.5 % eq. w(NaCl±CaCl2) and homogenization temperatures between 255 and 340 °C. Cassiterite-associated fluid inclusions show indications for heterogeneous entrapment and dilution of hydrothermal with meteoric fluids. Dilution of high-salinity fluids with low-salinity fluids and cooling of the system was probably a decisive process in the precipitation of cassiterite in the Geyer Sn system.

Funder

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics,Economic Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3