The Spatial and Temporal Evolution of the Sadisdorf Li-Sn-(W-Cu) Magmatic-Hydrothermal Greisen and Vein System, Eastern Erzgebirge, Germany

Author:

Leopardi Dino1,Gutzmer Jens1,Lehmann Bernd2,Burisch Mathias13

Affiliation:

1. 1 Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Strasse 40, 09599 Freiberg, Germany

2. 2 Mineral Resources, Technical University of Clausthal, Adolph-Roemer-Strasse 2A, 38678 Clausthal-Zellerfeld, Germany

3. 3 Mineral Systems Analysis Group, Department of Geology and Geological Engineering, Colorado School of Mines, 1516 Illinois Street, Golden, Colorado, 80401, USA

Abstract

Abstract The Sadisdorf Li-Sn-(W-Cu) prospect in eastern Germany is characterized by vein- and greisen-style mineralization hosted in and around a small granite stock that intruded into a shallow crustal environment. The nature and origin of this mineral system are evaluated in this contribution by a combination of petrography and fluid inclusion studies, complemented by Raman spectroscopy and whole-rock geochemical analyses. The early magmatic-hydrothermal evolution is characterized by a single-phase low-salinity (7.0 ± 4 wt % NaCl equiv), high-temperature (>340°C), CO2-CH4–bearing aqueous fluid, which caused greisen alteration and mineralization within the apical portions of the microgranite porphyry. The bimodal distribution of brine and vapor fluid inclusions, and the formation of a magmatic-hydrothermal breccia associated with the proximal vein mineralization are interpreted to mark the transition from lithostatic to hydrostatic pressure. The vein- and stockwork-style mineralization (main stage) displays lateral zonation, with quartz-cassiterite-wolframite-molybdenite mineral assemblages grading outward into base-metal sulfide-dominated assemblages with increasing distance from the intrusion. Late fluorite-bearing veinlets represent the waning stage in the evolution of the mineral system. The similarity in the homogenization temperature (250°–418°C) of fluid inclusions in quartz, cassiterite, and sphalerite across the Sadisdorf deposit suggests that cooling was not a significant factor in the mineral zonation. Instead, fluid-rock interaction along the fluid path is considered to have controlled this zonation. In contrast to quartz-, cassiterite- and sphalerite-hosted fluid inclusions, which have a salinity of 0.0 to 10.0 wt % NaCl equiv, the fluid inclusions in late fluorite veins that overprint all previous assemblages have a salinity of 0.0 to 3.0 wt % NaCl equiv and homogenize at temperatures of 120° to 270°C, thus indicating cooling with or without admixture of meteoric fluids during the waning stage of the mineral system. The Sadisdorf deposit shares similar characteristics with other deposits in the Erzgebirge region, including a shallow level of emplacement, similar mineralization/alteration styles, and a hydrothermal evolution that includes early-boiling, fluid-rock interaction, and late cooling. In contrast to most systems in the region, both proximal and distal mineralization are well preserved at Sadisdorf. The recognition of such spatial zoning may be a useful criterion for targeting greisen-related Li and Sn resources.

Publisher

Society of Economic Geologists, Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3