Orogenic gold: is a genetic association with magmatism realistic?

Author:

Goldfarb Richard J.,Pitcairn Iain

Abstract

AbstractMany workers accept a metamorphic model for orogenic gold ore formation, where a gold-bearing aqueous-carbonic fluid is an inherent product of devolatilization across the greenschist-amphibolite boundary with the majority of deposits formed within the seismogenic zone at depths of 6–12 km. Fertile oceanic rocks that source fluid and metal may be heated through varied tectonic scenarios affecting the deforming upper crust (≤ 20–25 km depth). Less commonly, oceanic cover and crust on a downgoing slab may release an aqueous-carbonic metamorphic fluid at depths of 25–50 km that travels up-dip along a sealed plate boundary until intersecting near-vertical structures that facilitate fluid migration and gold deposition in an upper crustal environment. Nevertheless, numerous world-class orogenic gold deposits are alternatively argued to be products of magmatic-hydrothermal processes based upon equivocal geochemical and mineralogical data or simply a spatial association with an exposed or hypothesized intrusion. Oxidized intrusions may form gold-bearing porphyry and epithermal ores in the upper 3–4 km of the crust, but their ability to form economic gold resources at mesozonal (≈ 6–12 km) and hypozonal (≈ > 12 km) depths is limited. Although volatile saturation may be reached in magmatic systems at depths as deep as 10–15 km, such saturation doesn’t indicate magmatic-hydrothermal fluid release. Volatiles typically will be channeled upward in magma and mush to brittle apical roof zones at epizonal levels (≈ < 6 km) before large pressure gradients are reached to rapidly release a focused fluid. Furthermore, gold and sulfur solubility relationships favor relatively shallow formation of magmatic-hydrothermal gold systems; although aqueous-carbonic fluid release from a magmatic system below 6 km would generally be diffuse, even if in cases where it was somehow better focused, it is unlikely to contain substantial gold. Where reduced intrusions form through assimilation of carbonaceous crustal material, subsequent high fluid pressures and hydrofracturing have been shown to lead to development of sheeted veins and greisens at depths of 3–6 km. These products of reduced magmatic-hydrothermal systems, however, typically form Sn and or W ores, with economic low grade gold occurrences (< 1 g/t Au) being formed in rare cases. Thus, whereas most moderate- to high-T orogens host orogenic gold and intrusions, there is no genetic association.

Funder

Stockholm University

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics,Economic Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3