LA-ICP-MS Analyses of Sulfides from Gold-Bearing Zones at the Perron Deposit, Abitibi Belt, Canada: Implications for Gold Remobilization through Metamorphism from Volcanogenic Mineralizations to Orogenic Quartz–Carbonate Veins

Author:

Gaboury Damien1ORCID,Genna Dominique1ORCID,Augustin Jérôme2,Bouchard Maxime2,Trottier Jacques3

Affiliation:

1. Sciences de la Terre, Université du Québec à Chicoutimi (UQAC), Chicoutimi, QC G7H 2B1, Canada

2. Laurentia Exploration Inc., Jonquière, QC G7X 0J6, Canada

3. Amex Exploration Inc., Montréal, QC H2Y 2P5, Canada

Abstract

The Perron deposit, located in the northern part of the Archean Abitibi belt, bears some of the highest gold-grade mineralization for orogenic-vein-type deposits worldwide (High-Grade Zone: HGZ). More than 13 gold-bearing zones with different sulfide assemblages, hydrothermal alterations, and gold grades have been recently outlined, and they range from volcanogenic to orogenic in origin. In addition, seven zones are hosted in a restricted volume of ~1 km3, which is called the Eastern Gold Zone. Pyrite, sphalerite, pyrrhotite, and chalcopyrite—each from a different gold-bearing zone—were analyzed with LA-ICP-MS to decipher their genetic links, mineralizing processes, and temperature of formation. The temperatures calculated with the sphalerite GGIMFis thermometer range from 348 to 398 °C. All gold-bearing zones recorded volcanogenic hydrothermal inputs at different intensities, manifested by pyrrhotite. Pyrite was late-metamorphic and related to the orogenic gold system induced by the contact metamorphism of amphibolite facies. The pyrrhotite grains had very homogeneous trace element signatures in all zones, which is a characteristic of metamorphic recrystallization, exhibiting a loss of mobile elements (Au, Te, Bi, Tl, Sn, W, In) but high concentrations of Ni, Co, and As. Conversely, the pyrite was systematically enriched with all elements depleted from pyrrhotite, bearing five specific signatures of element enrichments: W, Tl, Sn, In-Cd-Zn, and Bi-Te-Au. For gold-rich zones (e.g., the HGZ), gold was linked to the Bi-Te-Au signature of pyrite, with Bi enrichment occurring at up to 72,000 times the background level in Archean shale pyrite. It was concluded that gold was transported, at least in part, as Bi-Te melts in the previously documented non-aqueous orogenic fluids, hence accounting for the very-high-grade gold content of the HGZ. Genetically, the metamorphism of primary gold-bearing volcanogenic mineralizations was the main source of gold during the overprinting of amphibolite (600 °C) in a metamorphically induced orogenic mineralizing event. A strong volcanogenic pre-enrichment is considered the main factor accounting for the gold endowment of the Eastern Gold Zone.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3