Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs

Author:

Laakmann Fabian,Petersen PhilippORCID

Abstract

AbstractWe demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear transport equations. For non-smooth initial conditions, the solutions of these PDEs are high-dimensional and non-smooth. Therefore, approximation of these functions suffers from a curse of dimension. We demonstrate that through their inherent compositionality deep neural networks can resolve the characteristic flow underlying the transport equations and thereby allow approximation rates independent of the parameter dimension.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Reference57 articles.

1. Allaire, G., Blanc, X., Després, B., Golse, F.: Transport et diffusion. Ecole Polytechnique (2019)

2. Ambrosio, L.: Transport equation and cauchy problem for non-smooth vector fields. In: Calculus of Variations and Nonlinear Partial Differential Equations, pp 1–41. Springer, Berlin (2008)

3. Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows. Birkhäuser-Verlag (2005)

4. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory 39(3), 930–945 (1993)

5. Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and kolmogorov equations by means of deep learning. arXiv:1806.00421 (2018)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3