Stabilization of spline bases by extension

Author:

Chu Ba-Duong,Martin Florian,Reif UlrichORCID

Abstract

AbstractWe present a method to stabilize bases with local supports by means of extension. It generalizes the known approach for tensor product B-splines to a much broader class of functions, which includes hierarchical and weighted variants of polynomial, trigonometric, and exponential splines, but also box splines, T-splines, and other function spaces of interest with a local basis. Extension removes elements that cause instabilities from a given basis by linking them with the remaining ones by means of a specific linear combination. The two guiding principles for this process are locality and persistence. Locality aims at coupling basis functions whose supports are close together, while persistence guarantees that a given set of globally supported functions, like certain monomials in the case of polynomial splines, remain in the span of the basis after extension. Furthermore, we study how extension influences the approximation power and the condition of Gramian matrices associated with the basis, and present a series of examples illustrating the potential of the method.

Funder

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An adaptive collocation method on implicit domains using weighted extended THB-splines;Computer Aided Geometric Design;2024-06

2. Fast immersed boundary method based on weighted quadrature;Computer Methods in Applied Mechanics and Engineering;2023-12

3. Adaptive and local regularization for data fitting by tensor-product spline surfaces;Advances in Computational Mathematics;2023-07-24

4. Robust high-order unfitted finite elements by interpolation-based discrete extension;Computers & Mathematics with Applications;2022-12

5. Mesh-free Galerkin approximation for parabolic nonlocal problem using web-splines;Computers & Mathematics with Applications;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3