High-order Numerical Quadratures in a Tetrahedron with an Implicitly Defined Curved Interface

Author:

Cui Tao1,Leng Wei1,Liu Huaqing1,Zhang Linbo1,Zheng Weiying1

Affiliation:

1. Chinese Academy of Sciences, China and University of Chinese Academy of Sciences, Yuquan Road, Beijing, China

Abstract

Given a shape regular tetrahedron and a curved surface that is defined implicitly by a nonlinear level set function and divides the tetrahedron into two sub-domains, a general-purpose, robust, and high-order numerical algorithm is proposed in this article for computing both volume integrals in the sub-domains and surface integrals on their common boundary. The algorithm uses a direct approach that decomposes 3D volume integrals or 2D surface integrals into multiple 1D integrals and computes the 1D integrals with Gaussian quadratures. It only requires finding roots of univariate nonlinear functions in given intervals and evaluating the integrand, the level set function, and the gradient of the level set function at given points. It can achieve arbitrarily high accuracy by increasing the orders of Gaussian quadratures, and it does not need extra a priori knowledge about the integrand and the level set function. The code for the algorithm is freely available in the open-source finite element toolbox Parallel Hierarchical Grid (PHG) and can serve as a basic building block for implementing 3D high-order numerical algorithms involving implicit interfaces or boundaries.

Funder

State Key Laboratory of Scientific and Engineering Computing (LSEC), and National Center for Mathematics and Interdisciplinary Sciences of Chinese Academy of Sciences

National Magnetic Confinement Fusion Science Program of China

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3