Affiliation:
1. Chinese Academy of Sciences, China and University of Chinese Academy of Sciences, Yuquan Road, Beijing, China
Abstract
Given a shape regular tetrahedron and a curved surface that is defined implicitly by a nonlinear level set function and divides the tetrahedron into two sub-domains, a general-purpose, robust, and high-order numerical algorithm is proposed in this article for computing both volume integrals in the sub-domains and surface integrals on their common boundary. The algorithm uses a direct approach that decomposes 3D volume integrals or 2D surface integrals into multiple 1D integrals and computes the 1D integrals with Gaussian quadratures. It only requires finding roots of univariate nonlinear functions in given intervals and evaluating the integrand, the level set function, and the gradient of the level set function at given points. It can achieve arbitrarily high accuracy by increasing the orders of Gaussian quadratures, and it does not need extra
a priori
knowledge about the integrand and the level set function. The code for the algorithm is freely available in the open-source finite element toolbox Parallel Hierarchical Grid (PHG) and can serve as a basic building block for implementing 3D high-order numerical algorithms involving implicit interfaces or boundaries.
Funder
State Key Laboratory of Scientific and Engineering Computing (LSEC), and National Center for Mathematics and Interdisciplinary Sciences of Chinese Academy of Sciences
National Magnetic Confinement Fusion Science Program of China
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献