Abstract
AbstractFinding a geodesic joining two given points in a complete path-connected Riemannian manifold requires much more effort than determining a geodesic from initial data. This is because it is much harder to solve boundary value problems than initial value problems. Shooting methods attempt to solve boundary value problems by solving a sequence of initial value problems, and usually need a good initial guess to succeed. The present paper finds a geodesic $$\gamma :[0,1]\rightarrow M$$
γ
:
[
0
,
1
]
→
M
on the Riemannian manifold M with γ(0) = x0 and γ(1) = x1 by dividing the interval [0,1] into several sub-intervals, preferably just enough to enable a good initial guess for the boundary value problem on each subinterval. Then a geodesic joining consecutive endpoints (local junctions) is found by single shooting. Our algorithm then adjusts the junctions, either (1) by minimizing the total squared norm of the differences between associated geodesic velocities using Riemannian gradient descent, or (2) by solving a nonlinear system of equations using Newton’s method. Our algorithm is compared with the known leapfrog algorithm by numerical experiments on a 2-dimensional ellipsoid Ell(2) and on a left-invariant 3-dimensional special orthogonal group SO(3). We find Newton’s method (2) converges much faster than leapfrog when more junctions are needed, and that a good initial guess can be found for (2) by starting with Riemannian gradient descent method (1).
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference33 articles.
1. Fletcher, T.: Geodesic regression on Riemannian manifolds. In: Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy-Geometrical and Statistical Methods for Modelling Biological Shape Variability, pp. 75–86 (2011)
2. Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013)
3. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging 23(8), 995–1005 (2004)
4. Fletcher, P.T., Lu, C., Joshi, S.: Statistics of shape via principal geodesic analysis on Lie groups. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, vol. 1, pp. I–I, IEEE (2003)
5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Convergence Analysis of Leapfrog for Geodesics;SIAM Journal on Numerical Analysis;2023-10-06
2. Reactive motion generation on learned Riemannian manifolds;The International Journal of Robotics Research;2023-08-28
3. Finding extremals of Lagrangian actions;Communications in Nonlinear Science and Numerical Simulation;2023-01