Simulation of mid-air images using combination of physically based rendering and image processing

Author:

Hoshi Ayami,Kiuchi Shunji,Koizumi NaoyaORCID

Abstract

AbstractAlthough it is beneficial to use an optical simulator to design a mid-air imaging system, the use of a simulator requires optical knowledge, and it cannot be handled by non-specialists. To create a design assistance system that can be used by non-specialists, we demonstrate three methods: a method for extracting mid-air images and images of stray light from computer graphics rendered images, a method for calculating the visible range of mid-air images, and an evaluation of design parameters. First, a mid-air image and an image of stray light are extracted by considering the differences of images rendered using different numbers of bounces at each camera position, after which the visible range of the mid-air image is calculated. In addition, other parameters, such as the distance between a micro-mirror array plate (MMAP) and the extracted mid-air image, are adjusted in detail and evaluated by considering the visible range of the obtained mid-air image. Moreover, to demonstrate the effectiveness of the proposed method, the design of the previous research was improved to eliminate images of stray light, and we reduced the size of the existing system. Unlike other conventional approaches, using the visible range of the extracted mid-air images and without the need for a visual check, our proposed method enables the extraction of mid-air images and unwanted light, and the evaluation of optical systems. This technique can be applied to improve the design of optical systems and in the examination of the related applications.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3