Forecasting of BTC volatility: comparative study between parametric and nonparametric models
Author:
Funder
CNRST
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
http://link.springer.com/content/pdf/10.1007/s13748-019-00196-w.pdf
Reference86 articles.
1. Pedro, F.: Understanding Bitcoin: Cryptography. Engineering and Economics. Wiley, New York (2014). ISBN 978-1-119-01916-9
2. Werner, K., Marcel, C.M.: A hybrid volatility forecasting framework integrating GARCH. Artif. Neural Netw. Tech. Anal. Princ. Compon. Anal. Expert Syst. Appl. 109, 1–11 (2018). https://doi.org/10.1016/j.eswa.2018.05.011
3. Khaldi, R., El Afia, A., Chiheb, R., Faizi, R.: Forecasting of Bitcoin daily returns with EEMD-ELMAN based model. In: Proceedings of ACM LOPAL Conference, Rabat, Morocco, May 2018 (LOPAL’18) (2018). https://doi.org/10.1145/3230905.3230948
4. Urquhart, A.: The inefficiency of Bitcoin. Econ. Lett. 148, 80–82 (2016). https://doi.org/10.1016/j.econlet.2016.09.019
5. Yu, M., Gao, R., Su, X., Jin, X., Zhang, H., Song, J.: Forecasting Bitcoin volatility: the role of leverage effect and uncertainty. Phys. A. (2019). https://doi.org/10.1016/j.physa.2019.03.072
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dynamics in Realized Volatility Forecasting: Evaluating GARCH Models and Deep Learning Algorithms Across Parameter Variations;Computational Economics;2024-08-12
2. Forecasting cryptocurrencies volatility using statistical and machine learning methods: A comparative study;Applied Soft Computing;2024-01
3. A Hybrid GARCH and Deep Learning Method for Volatility Prediction;Journal of Applied Mathematics;2024-01
4. Predicting the volatility of Bitcoin returns based on kernel regression;Annals of Operations Research;2023-08-14
5. Hybrid deep learning and GARCH-family models for forecasting volatility of cryptocurrencies;Machine Learning with Applications;2023-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3