Dynamics in Realized Volatility Forecasting: Evaluating GARCH Models and Deep Learning Algorithms Across Parameter Variations

Author:

Akgun Omer BurakORCID,Gulay EmrahORCID

Abstract

AbstractThe modeling and forecasting of return volatility for the top three cryptocurrencies, which are identified by the highest trading volumes, is the main focus of the study. Eleven different GARCH-type models were analyzed using a comprehensive methodology in six different distributions, and deep learning algorithms were used to rigorously assess each model’s forecasting performance. Additionally, the study investigates the impact of selecting dynamic parameters for the forecasting performance of these models. This study investigates if there are any appreciable differences in forecast outcomes between the two different realized variance calculations and variations in training size. Further investigation focuses on how the use of expanding and rolling windows affects the optimal window type for forecasting. Finally, the importance of choosing different error measurements is emphasized in the framework of comparing forecasting performances. Our results indicate that in GARCH-type models, 5-minute realized variance shows the best forecasting performance, while in deep learning models, median realized variance (MedRV) has the best performance. Moreover, it has been determined that an increase in the training/test ratio and the selection of the rolling window approach both play important roles in achieving better forecast accuracy. Finally, our results show that deep learning models outperform GARCH-type models in volatility forecasts.

Funder

Dokuz Eylül University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3