Forming-Free and Non-linear Resistive Switching in Bilayer $$\hbox {HfO}_{\textrm{x}}$$/$$\hbox {TaO}_{\textrm{x}}$$ Memory Devices by Interface-Induced Internal Resistance
-
Published:2024-02-06
Issue:4
Volume:20
Page:363-371
-
ISSN:1738-8090
-
Container-title:Electronic Materials Letters
-
language:en
-
Short-container-title:Electron. Mater. Lett.
Author:
Napari MariORCID, Stathopoulos Spyros, Prodromakis Themis, Simanjuntak FirmanORCID
Abstract
Abstract
Resistive switching memory devices with tantalum oxide ($$\hbox {TaO}_{\textrm{x}}$$
TaO
x
) and hafnium oxide ($$\hbox {HfO}_{\textrm{x}}$$
HfO
x
) mono- and bilayers were fabricated using atomic layer deposition. The bilayer devices with Ti and TiN electrodes show non-linear switching characteristics, and can operate without requiring an initial electroforming step. The insertion of the $$\hbox {HfO}_{\textrm{x}}$$
HfO
x
layer induces the switching behaviour on single layer $$\hbox {TaO}_{\textrm{x}}$$
TaO
x
that shows Zener diode-like characteristics, with conductivity depending on the top electrode metal. The electronic conductivity mechanism study shows Schottky emission at low voltage regime followed by tunneling at higher applied bias, both indicating interface-dominated conduction. The switching mechanism study is supported by X-ray photoelectron spectroscopy characterization of the films that show a formation of $$\hbox {TaO}_{\textrm{x}}\hbox {N}_{\textrm{y}}$$
TaO
x
N
y
and $$\hbox {TaN}_{\textrm{x}}$$
TaN
x
species at the oxide-electrode interface. This interfacial layer serves as a high resistivity barrier layer enabling the homogeneous resistive switching behavior.
Graphical Abstract
Funder
Horizon 2020 Framework Programme Engineering and Physical Sciences Research Council Royal Academy of Engineering HORIZON EUROPE Marie Sklodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Salahuddin, S., Ni, K., Datta, S.: The era of hyper-scaling in electronics. Nat. Electron. 1(8), 442–450 (2018). https://doi.org/10.1038/s41928-018-0117-x 2. Zidan, M.A., Strachan, J.P., Lu, W.D.: The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8 3. Fang, Z., Yu, H.Y., Li, X., Singh, N., Lo, G.Q., Kwong, D.L.: HfO$$_x$$/TiO$$_x$$/HfO$$_x$$/ TiO$$_x$$ multilayer-based forming-free RRAM devices with excellent uniformity. IEEE Electron Device Lett. 32(4), 566–568 (2011). https://doi.org/10.1109/LED.2011.2109033 4. Shuai, Y., Ou, X., Luo, W., Mücklich, A., Bürger, D., Zhou, S., Wu, C., Chen, Y., Zhang, W., Helm, M., Mikolajick, T., Schmidt, O.G., Schmidt, H.: Key concepts behind forming-free resistive switching incorporated with rectifying transport properties. Sci. Rep. 3(1), 2208 (2013). https://doi.org/10.1038/srep02208 5. Zhang, K., Long, S., Liu, Q., Lü, H., Li, Y., Wang, Y., Lian, W., Wang, M., Zhang, S., Liu, M.: Progress in rectifying-based RRAM passive crossbar array. Sci. China Technol. Sci. 54(4), 811–818 (2011). https://doi.org/10.1007/s11431-010-4240-9
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|