A real-time and energy-efficient SRAM with mixed-signal in-memory computing near CMOS sensors

Author:

Diaz-Madrid Jose-Angel,Domenech-Asensi Gines,Ruiz-Merino Ramon,Zapata-Perez Juan-Francisco

Abstract

AbstractIn-memory computing (IMC) represents a promising approach to reducing latency and enhancing the energy efficiency of operations required for calculating convolution products of images. This study proposes a fully differential current-mode architecture for computing image convolutions across all four quadrants, intended for deep learning applications within CMOS imagers utilizing IMC near the CMOS sensor. This architecture processes analog signals provided by a CMOS sensor without the need for analog-to-digital conversion. Furthermore, it eliminates the necessity for data transfer between memory and analog operators as convolutions are computed within modified SRAM memory. The paper suggests modifying the structure of a CMOS SRAM cell by incorporating transistors capable of performing multiplications between binary (−1 or +1) weights and analog signals. Modified SRAM cells can be interconnected to sum the multiplication results obtained from individual cells. This approach facilitates connecting current inputs to different SRAM cells, offering highly scalable and parallelized calculations. For this study, a configurable module comprising nine modified SRAM cells with peripheral circuitry has been designed to calculate the convolution product on each pixel of an image using a $$3 \times 3$$ 3 × 3 mask with binary values (−1 or 1). Subsequently, an IMC module has been designed to perform 16 convolution operations in parallel, with input currents shared among the 16 modules. This configuration enables the computation of 16 convolutions simultaneously, processing a column per cycle. A digital control circuit manages both the readout or memorization of digital weights, as well as the multiply and add operations in real-time. The architecture underwent testing by performing convolutions between binary masks of 3 × 3 values and images of 32 × 32 pixels to assess accuracy and scalability when two IMC modules are vertically integrated. Convolution weights are stored locally as 1-bit digital values. The circuit was synthesized in 180 nm CMOS technology, and simulation results indicate its capability to perform a complete convolution in 3.2 ms, achieving an efficiency of 11,522 1-b TOPS/W (1-b tera-operations per second per watt) with a similarity to ideal processing of 96%.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3